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Algorithms for the Solution of Cyclic Tridiagonal Systems 

In this paper we consider several algorithms for the solution of the system 
Ax = b, where A is an n x n “cyclic tridiagonal” matrix of the form 

6, cl a1 

a2 6, ~2 

a3 b, ~3 

A= . . . . . . . . . 

an-1 bn-1 cn-1 
-G a, b, _ 

and A is assumed to be diagonally dominant. 
In the case where (zl = c, = 0, the matrix A is strictly tridiagonal, and algorithms 

for the solution of such systems are well known (e.g., [7, p. 1951). Cyclic tridiagonal 
systems with a, # 0, c, # 0 arise in the finite-difference solution of elliptic 
equations over domains with periodic boundary conditions, e.g., on a cylinder 
or an annulus, both by direct methods [5] and by iterative methods such as SLOR 
and ADI [8]; and in the successive peripheral overrelaxation (SPOR) method on 
the topologically equivalent case of a square with a central hole [2]. They also arise 
in working with splines on a periodic mesh [l]. 

We will consider primarily the most usual case in which A is a symmetric 
circulant matrix. It is natural to scale the equations so that we have ai = ci = 1 
and bi = h, 1 < i < n, where h is a constant with 1 h I > 2. Also, we will generally 
assume that the system has to be solved a number of times with different right-hand 
sides, so that any coefficients required by the solution algorithm can be precal- 
culated and stored. In this situation, the standard method [7] for the corresponding 
strictly tridiagonal system requires 2n additions and 2n multiplications per right- 
hand side, and the storage of n precomputed coefficients. It is of course possible 
to extend this method, based on Gaussian elimination, to the cyclic tridiagonal 
case; an example is given by Evans and Atkinson [4]. The resulting algorithm 
is, however, rather clumsy; even in the symmetric case it requires 4n additions 
and 4n multiplications per right-hand side, and the storage of 3n precomputed 
coefficients. 
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We describe four algorithms for the symmetric circulant case in the form 

-#A 1 1’ 
1 A 1 

1 h 1 
. . . . . 

. . . 
1 x 1 

1 1 h 

-Yl 

X2 1: x3 

1. 

X,-l 

X?l 

(0 

Three of them have appeared in the literature before, while the fourth seems to be 
new. 

(a) Matrix factorization. Evans [3] has proposed a neat algorithm based on 
the factorization A = pQQr, where t.~ = X/(1 + CX~) and (Y, Q are given by 

a = (--h $. (A2 - 4)li”)/2, (2) 

- 1 --Cd 
--13( 1 

Q= -“-f, 1 1 

/ 

. 
. . . . . . 

-a 1 

The solution vector x is thus found by first solving for an auxiliary vector y 
given by 

Qy = p-lb 

and then solving Qrx = y. 
The first stage of the algorithm is given by 

~(1 - o?) y1 = b, + e-lb2 + Czb3 + 0.. + cx2b,-1 + ab,, (3) 

yj = p-lbj + my<-.1 , 2<i<n, 

and the second stage by 

xi = J’j + axj+1 ) n-l>i>l. 
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Using a nesting technique to compute the right-hand sides of (3) and (4), the 
only coefficients which need to be precalculated are CL, 01, and (1 - o?), and the 
whole algorithm requires 4n additions and 5n multiplications for each right-hand 
side. In some applications it would be possible to save one multiplication by 
incorporating the constant multiplier p-l during the computation of the right-hand 
side. Numerical stability is guaranteed by choosing the positive sign in Eq. (2) for 
h > 2 and the negative sign for X < -2, so that we always have 1 011 < 1. 

(b) CycZic reduction. In the direct method due to Hackney [5] for solving 
Poisson’s equation on a rectangular mesh, extensive use is made of a cyclic reduc- 
tion technique for solving systems of the form (1). In the following it is assumed 
that n is a power of 2, say n = 2m; the algorithm can quite easily be extended to 
the case n = 3 x 2”. 

Consider any three consecutive equations from the system (1): 

Xi-2 + hxi-l + Xi = bi-1, 

Xi-1 + hxi + xi+l = bi, 

xi + XX,+1 + Xi+2 = bt+lp 

with the indices interpreted cyclically, i.e., x,+~ = xi . Multiplying the second 
equation by --X and adding, we obtain 

x.- + X(‘)x. + x. I 2 i 
- b(l) 

a+2 - i 9 

where h’l’ = 2 - X2, b\” = bi_l - hbi + bi+l . 
We thus obtain a new system, of order n/2, with the same cyclic tridiagonal 

structure as the original system. The process can now be repeated until after m 
levels of recursion only one equation remains which can be solved for x1 . The 
remainder of the solution can then be built up using a recursive back-solution 
process. Details of the algorithm are given by Hackney in [5] and [6] and need 
not be repeated here. The solution requires approximately 4n additions and 2n 
multiplications for each right-hand side; only m auxiliary coefficients Aft) and 
their reciprocals are used, and these can be precomputed if desired. The principal 
disadvantages of the algorithm are that it can only handle systems of order n = 2”, 
or at best n = p x 2”’ for p small, and that its recursive structure, with indices 
interpreted cyclically, makes the computation of storage addresses rather com- 
plicated. As shown in [5], there is a possible compensating advantage for large n 
in that it may be unnecessary to carry out all m levels of reduction in order to 
obtain the required degree of accuracy. 

5Wr9/3-6 
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(c) The Ahlberg-Nilson- Walsh algorithm. If we let E be the tridiagonal matrix 
obtained by deleting the last row and column of A, and define 

1 
0 

f= 0 I- 0 
1 I jiz 

then the system (1) can be rewritten as 

x1 
x2 

X3 

&-I 

Eil + fx, = b, (5) 
f=j; + Xx, = 6, . (6) 

As the matrix E is tridiagonal, we can easily compute the vector v = E-%. 
Equation (5) then becomes 

iz = v - E-lfx, . 

Substituting in (6) gives a scalar equation for xn : 

(7) 

(X - f=E-lf) x, = b, - f= * v = b, - (q + IQ. 

The remainder of the solution vector, i.e., Iz, can then be found from Eq. (7). 
The algorithm requires approximately 3n additions and 3n multiplications for 
each right-hand side, and (2n - 1) precomputed coefficients, namely (n - 1) for 
the tridiagonal system v = E-lb, the constant (h - fTE-lf)-I, and the vector 
E-lf which is needed to implement Eq. (7). Details of this algorithm are given 
(for a general cyclic tridiagonal matrix) by Ahlberg, Nilson, and Walsh ([ 1, p. 151). 

(d) Algorithm 4. The fourth algorithm presented here is based on a simple 
idea: Suppose that, in Eq. (l), we already knew the value of x, . We could then 
obtain the reduced system 

x2 

x3 

:l *4 

.J 
= 

X,-l XVI 
, 
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which could be solved, using the standard tridiagonal algorithm, in 2(n - 1) 
additions and 2(n - 1) multiplications, using (n - 1) precomputed coefficients. 

Let z = (zl , z2 ,..., z,) be the first row of the inverse matrix A-l. Then x1 is 
given by the scalar product x1 = z . b, i.e., 

Xl = f zibi 3 
i=l 

(8) 

which can be evaluated in (n - 1) additions and IZ multiplications, making a total 
of (3n - 3) additions and (3n - 2) multiplications. But since A is a symmetric 
circulant matrix, so too is A-l, and hence zi = z,,++~ , 2 < i < n. Let m = integer 
part of (n + 1)/2. We can rewrite the summation (8) as 

or 

xl = z&l + f zi(bi + b,+z-i) 
i=2 

if n is odd 

~1 = zlbl + f zi(bi + bn+,-i) + %a+1 m+1 b if n is even. 
id 

We have thus reduced the total number of operations to approximately 3n 
additions and 2.5n multiplications, and the number of precomputed coefficients 
to approximately 1.5~~. Since the tridiagonal algorithm itself is stable with respect 
to rounding errors, the only problem lies in the accurate determination of the 
vector z. It is quite easy to show that 

T *if1 - - u(ai + an-q, 

where 01 is given by Eq. (2) and 

u = I/[(& + Cl) + X(1 + an)]. 

The four algorithms described above were all programmed with comparable 
care in Assembler Language and run (in single precision) on an IBM 360/195. 
Each was timed for four values of n; these were chosen to be powers of 2 in order 
to accommodate the cyclic reduction algorithm. but it should be remembered that 
the other three methods are subject to no such restrictions on n. The results are 
presented in Table I, which shows that Algorithm 4 is about 25 % faster than the 
matrix factorization scheme, with the two remaining algorithms intermediate in 
speed. Cyclic reduction suffers from its more complicated structure for smaller 
values of n. 

The accuracy of the various schemes was also compared for various values of n 
and h. In each case, a hundred random vectors x were generated with entries in 
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the range 0.0 < xi ,< 10.0, corresponding vectors b = Ax were computed, and 
the four algorithms were used to compute an approximate solution from b. The 
largest error in each computed solution vector was found, and these were averaged 
over the 100 random vectors. The results are summarized in Table II. 

TABLE I 

Execution Times in Microseconds for Solution of a Cyclic Tridiagonal System of Order n 

n Matrix factorization Cyclic reduction Ahlberg/Nilson/Walsh Algorithm 4 

16 36 36 31 28 
32 64 60 55 48 
64 119 105 103 88 

128 231 194 199 167 

TABLE II 

Mean Maximum Errors in the Solution of a Cyclic Tridiagonai System of Order n 
(Unit: 1O--B) 

n Matrix factorization Cyclic reduction Ahlberg/Nilson/Walsh Algorithm 4 
(a) A = -3.0 

16 7.7 14.7 10.1 10.3 
32 8.3 16.8 12.3 12.3 
64 9.6 19.5 13.9 13.9 

128 9.9 20.6 14.5 14.6 

(b) A = $4.0 

16 4.4 8.1 6.8 6.7 
32 5.0 9.4 7.6 7.5 
64 5.5 11.1 8.0 8.0 

128 5.7 12.1 8.5 8.6 

It will be seen that matrix factorization gives the most accurate answers, and 
cyclic reduction the least, with the other two algorithms intermediate and very 
similar. However, all four algorithms are stable with respect to rounding errors, 
and for practical purposes there is little to choose between them from this point 
of view. 



SOLUTION OF CYCLIC TRIDIAGONAL SYSTEMS 323 

A careful analysis of the Ahlberg-Nilson-Walsh algorithm shows that the 
number of multiplications could be reduced to 2.5n as in the case of Algorithm 4, 
by noting that the elements of the vector h = E-lf are symmetric, i.e., hi = /I,-~ , 
1 < i < n - 1; hence half the multiplications in Eq. (7) are in fact redundant. 
This improvement should make the Ahlberg-Nilson-Walsh algorithm competitive 
with Algorithm 4, though the latter is conceptually a little simpler. 

General cyclic tridiagonal systems in which the matrix A is neither symmetric 
nor circulant arise in both spline and elliptic equation applications when a non- 
uniform mesh is used. Neither matrix factorization nor cyclic reduction can easily 
be generalized to these cases. For the Ahlberg-Nilson-Walsh algorithm the 
generalized form is given in [l], and for Algorithm 4 the generalized form is 
obvious, provided that the first row of A-l can be obtained in some way. Both 
generalized algorithms require approximately 3n additions and 4n multiplications 
per right-hand side, and 3n precomputed coefficients. 

Finally, Algorithm 4 can easily be generalized to handle cyclic pentadiagonal 
systems of order n, either by computing two elements of the solution vector directly 
and then solving the resulting strictly pentadiagonal system of order (n - 2), or 
by factorizing the cyclic pentadiagonal matrix into the product of two cyclic 
tridiagonal matrices. 
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